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The probability of damage at the impact site in the outer glass ply of laminated glass units
subjected to low velocity small missile impacts is investigated. A dynamic, non-linear finite
element analysis is applied to compute the stress response on impacts. Based on the
cumulative damage theory, a damage factor is introduced and related to Weibull’s
distribution of probability to characterize the probability of damage. In conjunction with the
finite element analysis, controlled experiments are conducted to determine the material
constants appearing in the damage model and Weibull’s distribution of probability. A
parametric study involving impact velocity, glass ply thickness and interlayer thickness is
presented. C© 1998 Kluwer Academic Publishers

1. Introduction
Laminated glass units consisting of two soda lime glass
plies adhered by a polymer interlayer are used for ar-
chitectural and automotive glazing. Polyvinyl butyryl
(PVB) is the industry standard polymeric interlayer be-
cause of its excellent adhesive and optical qualities.
When subjected to severe dynamic blast pressure or
missile impacts, even if laminated glass units break,
fragments of broken glass plies still adhere to the in-
terlayer, thereby reducing the possibility of bodily in-
jury and property damage caused by flying glass frag-
ments. Another important characteristic of laminated
glass units is that the outer glass ply, when exposed to
missile impacts can be fractured, while the inner glass
ply remains unfractured. In automotive applications,
impacts can be caused, for example, by a small stone
thrown from the wheel of a leading vehicle into the
windshield of a following vehicle. In architectural ap-
plications, windborne debris, such as roof gravel, can
be hurled with sufficient velocity to break windows.
A study of damage caused by hurricane Alicia which
struck Houston, TX in August 1983 confirmed the oc-
currence of widespread window breakage caused by
windborne debris impact [1]. The need for improved
impact resistance of architectural glazing is clearly
evident.

In order to evaluate the structural behaviour of lami-
nated glass units and use them effectively and safely in
building applications, researchers in the fields of ma-
terials engineering, civil engineering and engineering
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mechanics have performed a variety of experimental
and theoretical studies. Huntsberger [2] presented a
simplified mathematical model to evaluate the adhesive
behavior of the PVB interlayer to the glass plies. Behr
et al. [3] experimentally investigated the behaviour of
laminated glass units under uniform lateral pressure
and compared the resulting experimental data with nu-
merical results obtained from a theoretical model in
which two glass plies were layered (i.e. the glass plies
were not adhered to the PVB interlayer). Behr and co-
workers [4] performed experiments to study the effects
of load duration and interlayer thickness on the behavior
of laminated glass units. Vallabhan and co-workers [5]
developed a simplified mathematical model for estab-
lishing the structural mechanics behaviour of laminated
glass units under uniform lateral pressure, in which the
effect of the PVB interlayer was ignored. Vallabhan
et al. [6] presented a sophisticated mathematical model
for laterally loaded laminated glass units in which the
PVB interlayer simply transferred shear stress while
the glass plies were subjected to bending moments and
membrane tension. The resulting mathematical model
computations were in good agreement with the avail-
able experimental data. Flocker and Dharani [7] used a
non-linear finite element analysis to model stress wave
propagation in laminated glass units subjected to small,
low velocity missile impacts. In all of the above stud-
ies, only prebreakage behaviour of laminated glass units
was investigated.

Other researchers investigated the postbreakage be-
haviour of laminated glass units. Pantelides and co-
workers [8] experimentally investigated the postbreak-
age behaviour of heat-strengthened laminated glass
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units under wind effects, wherein the breakage was
caused by small missile impacts. In their work, the
ability of heat-strengthened laminated glass units to
withstand small missile impacts without breaking the
inner glass ply was evaluated. Behr and Kremer [9]
performed experiments to evaluate the performance of
laminated glass units under simulated windborne debris
impacts. They found that increased interlayer thickness
could significantly reduce the observed probability of
inner glass ply breakage resulting from small wind-
borne debris impacts. Flocker and Dharani modified a
traditional nonlinear finite element code to model outer
glass ply fracture [10] and adhesive interlayer debond-
ing [11] in laminated glass units subjected to small, low
velocity missile impacts. Behret al. [12] reported an
experimental validation of the mechanics-based finite
element model of Flocker and Dharani [7] for archi-
tectural laminated glass units subjected to low velocity
small missile impacts. Dynamic strains predicted by the
finite element analysis were found to be in close agree-
ment with those measured with a high speed strain gage
data acquisition system.

In the above experimental study [12], it was ob-
served that damage occurs first at the impact site on
the exposed surface of the outer glass ply due to large
compressive stresses there. As the impact velocity in-
creases, the damaged area may increase in size and fi-
nally lead to the formation of a Hertz cone in the outer
glass ply. A similar phenomenon was observed by Ball
and McKenzie [13] in monolithic glass plates. If the
impact velocity of a given windborne missile is suffi-
ciently high, fracture will occur in both the outer and
inner glass plies of a laminated glass unit. As a first step
towards modelling the failure probability of the inner
glass ply, the probability of damage at the impact site
on the exposed surface of the outer glass ply of a lami-
nated glass unit subjected to low velocity small missile
impacts will be studied in this paper.

This paper describes a rigorous approach based on
a dynamic, non-linear finite element method to predict
the probability of damage in the outer glass ply. The
dynamic non-linear finite element analysis is applied to
compute the stress response to missile impacts. Based
on the cumulative damage concept which was presented
by Tuler and Butcher [14] and Brown [15], a damage
factor is introduced and related to Weibull’s distribution
of damage probability to characterize the probability of
damage. In conjunction with the finite element analysis,
controlled experiments are conducted to determine the
material parameters appearing in the damage model
and Weibull’s distribution. The numerical approach will
be then applied to predict the probability of damage
associated with impact velocity, glass ply thickness and
interlayer thickness.

2. Formulations
Consider a laminated glass unit consisting of an outer
glass ply of thicknessho and an inner glass ply of thick-
nesshi adhered to a PVB interlayer of thicknesshPVB
impacted normal to the outer glass ply surface by a small
hard missile modeled as a steel ball of radiusR with

Figure 1 Schematic diagram of a laminated glass subjected to a low-
velocity 2 g missile impact.

initial impact velocityV0, as shown in Fig. 1. Cylindri-
cal coordinates (r, θ, z) with a Lagrangian description
of motion are used in this problem. This impact problem
is axisymmetric, so normal stresses are independent of
the angleθ and the shear stress componentsτrθ andτθz
vanish.

2.1. Finite element modelling
Following the work of Flocker and Dharani [7], the im-
pact problem is solved numerically using the dynamic
non-linear finite element code DYNA2D developed by
Whirley and co-workers [16]. The basic equations gov-
erning this problem are given by Hallquist [17]. As with
most impact formulations, the stress components can be
computed as follows

σi j = Si j − pδi j (1)

p = −1

3
σkk (2)

whereσi j are the stress components,Si j are the devi-
atoric stress components,p is the pressure andδi j is
the Kronecker delta. The usual convention of repeated
subscripts implying summation is used.

The glass plies and steel ball are modeled as lin-
ear elastic materials. The deviatoric and volumetric be-
haviours are given by

Si j =
[

Eνεkk

(1+ ν)(1− 2ν)
+ p

]
δi j + Eεi j

(1+ ν)
(3)

p = − Eεkk

3(1− 2ν)
(4)

whereεi j are the strain components,E is Young’s mod-
ulus andν is Poisson’s ratio. The PVB interlayer is
modelled as a linear visco-elastic material for which
the deviatoric stress component is given by

Si j (t) = 2
∫ t

0
G(t − τ )ėi j dτ (5)
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Figure 2 A typical finite element mesh for a laminated glass unit.

wheret denotes time,̇ei j is the deviatoric strain rate
andG(t) is the stress relaxation modulus, assumed to
be of the form

G(t) = G∞ + (G0− G∞)e−βt (6)

whereG∞ is the long time shear modulus,G0 is the
short time shear modulus andβ is the decay factor.
The volumetric response is elastic, so the pressurep is
computed by

p = −K εkk (7)

whereK is the bulk modulus.
In this finite element analysis, the following constants

are used [12]: for the glass plies,E= 72 GPa,ν= 0.25,
mass densityρ= 2500 kg m−3; for the steel ball,
E= 200 GPa,ν= 0.29, ρ= 7800 kg m−3, R= 3.97
mm; and for the PVB interlayer,G0= 0.33 GPa,
G∞= 0.69 MPa, K = 20 GPa, β = 12.6 s−1 and
ρ= 1100 kg m−3. The laminated glass unit and steel
ball are discretized using four-noded elements. A typ-
ical mesh is illustrated in Fig. 2, which represents,
due to the axisymmetric natural of the problem, only
half of the actual geometry. The boundaries b–c and
a–d are unconstrained while c–d is a so-called “non-
reflecting boundary” that is achieved by producing an
impedance matching function to cancel incoming stress
waves. Non-reflecting boundaries are used to simulate
infinite bodies. In this problem, the planar dimensions
of laminated glass units are very large compared with
their thicknesses and the geometry of the steel ball.
Therefore, it is reasonable to assume that c–d is a non-
reflecting boundary.

2.2. Glass damage model
For brittle materials such as glass, a maximum stress
failure criterion is widely applied to predict material
failure. In a dynamic situation, however, the mate-
rial strength varies as a function of loading duration.

Mencik [18] mentioned that the dynamic tensile
strength of glass may be twice as much as the static
tensile strength, when the loading duration is as short
as 10µs. In the impact problem studied here, the load-
ing duration is approximately of 30µs [12]. It means
that the use of a maximum stress failure criterion in
this dynamic situation is questionable. A cumulative
damage model presented by Tuler and Butcher [14]
and Brown [15], which accounts for the variation of
material strength with respect to loading duration, is
adopted in this paper. Beason and Morgan [19] and
Norville and Minor [20] used a simplified version of
Brown’s [15] expression to model the failure of mono-
lithic glass plates under lateral wind pressure. Damage
at the impact site results from high compressive stress
during impact. Based on the cumulative damage theory
[14, 15], a damage factorKd is introduced

Kd =
∫ tf

0
8 dt (8)

wheretf is the failure time,t is the time after impact,
and the integrand8 in the damage factor function is
defined as

8 =

(
σmax− σ0

σ0

)n

if σmax≥ σ0

0 if σmax< σ0

(9)

in which σmax is the maximum principal compressive
stress at the impact site on the exposed surface of the
outer glass ply and is a function of the time after impact,
σ0 is the static compressive strength of glass, andn is a
material constant to be determined later. According to
the usual convention, compressive stresses should take
negative values. However, for convenience, bothσmax
andσ0 are treated as positive values. Usually, the static
compressive strength of glass is taken to be higher than
the static tensile strength by as much as 10 to 20 times
[18, 21]. For calculations in this paper, the static com-
pressive strength of glass is taken to be 15 times that
of the average static tensile strength which is approx-
imately 100 MPa [22], so thatσ0= 1.5 GPa. In Equa-
tion 8, it is implied that no damage would accumulate at
the impact site if the maximum principal compressive
stress (σmax) is less than the static compressive strength
(σ0). By using finite element stress analysis,σmax is
computed as a function of time after impact. Then, the
damage factor is computed directly by incorporating
an algorithm associated with Equation 8 into the finite
element code.

In general, Weibull’s probability distribution is very
useful for characterizing the probability of failure or
damage in glass-like brittle materials [23], which can
be expressed as

Pd = 1− e−B (10)

wherePd is the probability of damage or failure andB
is a function that reflects the risk of damage or failure.

Because damage at the impact site (under the im-
pactor) because of high compressive stress is strongly
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Figure 3 Time history plots of various principal compressive stresses
at impact site for a laminated glass unit (ho = hi = 4.81 mm and
hPVB = 1.52 mm).

localized, it is unnecessary to relate the risk function
B to an integral with respect to the surface area of the
laminated glass unit. In addition, because the maximum
principal compressive stress at the impact site is much
higher than other two principal compressive stresses,
as shown in Fig. 3, multi-axial stress correction factor
to the risk functionB is not necessary. Therefore, in
the spirit of Beason and Morgan [19] and Norville and
Minor [20], it is assumed that the risk function is related
only to the damage factor at the impact site as follows

B =
(

Kd

K0

)m

(11)

wherem and K0 are material parameters to be deter-
mined experimentally. The above assumption will be
shown later to be reasonable by using controlled exper-
iments in conjunction with the finite element analysis.

The probability of damage at the impact site can be
related to the damage factor by substituting Equation 11
into Equation 10 as follows

Pd = 1− exp

[
−
(

Kd

K0

)m]
(12)

m=
(

N∑
i = 1

ln K (i )
d

N∑
i = 1

ln

[
ln

(
1

1− P(i )
d

)]
− N

N∑
i = 1

{
ln K (i )

d ln

[
ln

(
1

1− P(i )
d

)]})/
[(

N∑
i = 1

ln K (i )
d

)2

− N
N∑

i = 1

(
ln K (i )

d

)2
]

(17)

As Kd can be computed directly in the dynamic finite
element analysis for any laminated glass unit for any
impact velocity, the probability of damage at the impact
site can be predicted with respect to impact velocity,
glass ply thickness and interlayer thickness by using
Equation 12.

2.3. Determination of material parameters
In order to determine the material parametersn, m and
K0 appearing in Equations 9 and 11, Equation 12 is first
rearranged as follows

ln

[
ln

(
1

1− Pd

)]
= m ln Kd−m ln K0 (13)

From the above equation, ln{ln[1/(1− Pd)]} varies lin-
early with respect to lnKd, while m is the slope and
m(ln K0) is the intercept. Therefore, by obtaining a
plot of ln{ln[1/(1 − Pd)]} versus lnKd, the material
constantsm andK0 can be determined. First, the prob-
ability of damage (Pd) at various values (N) of the im-
pact velocity (V0) for a given laminated glass unit is
obtained by controlled impact tests. Then, the damage
factor (Kd) is computed at various impact velocities
(V0) for the above laminated glass unit by using the
results of the finite element analysis via Equations 8
and 9. At a given impact velocityV (i )

0 , let P(i )
d cor-

respond toK (i )
d with i = 1, 2, . . . , N. Using the least

square method, Equation 13 is fitted throughN data
points. The summation of the square of the error,R2,
is then given by

R2=
N∑

i = 1

{
ln

[
ln

(
1

1− P(i )
d

)]
−m ln K (i )

d +m ln K0

}2

(14)

Minimizing R2 with respect tom andm(lnK0) leads to
the following equations

N∑
i = 1

ln K (i )
d

{
ln

[
ln

(
1

1− P(i )
d

)]

−m ln K (i )
d +m ln K0

}
= 0 (15)

N∑
i = 1

{
ln

[
ln

(
1

1− P(i )
d

)]
−m ln K (i )

d +m ln K0

}
= 0

(16)

Solving the above two equations form and lnK0
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ln K0 =
(

N∑
i = 1

(
ln K (i )

d

)2 N∑
i = 1

{
ln

[
ln

(
1

1− P(i )
d

)]}
−

N∑
i = 1

ln K (i )
d

N∑
i = 1

{
ln K (i )

d ln

[
ln

(
1

1− P(i )
d

)]})/
(

N∑
i = 1

ln K (i )
d

N∑
i = 1

ln

[
ln

(
1

1− P(i )
d

)]
− N

N∑
i = 1

{
ln K (i )

d ln

[
ln

(
1

1− P(i )
d

)]})
(18)

Substituting Equations 16 and 17 into Equation 13,R2 can be calculated as

R2 =
N∑

j = 1

 ln

[
ln

(
1

1− P( j )
d

)]
−
[(

N∑
i = 1

[
ln K (i )

d ln K ( j )
d −

(
ln K (i )

d

)2
])/

((
N∑

i = 1

ln K (i )
d

)2

− N
N∑

i = 1

(
ln K (i )

d

)2
)]

N∑
i = 1

ln

[
ln

(
1

1− P( j )
d

)]

+
[(

N ln K ( j )
d −

N∑
i = 1

ln K (i )
d

)
N∑

i = 1

{
ln K (i )

d ln

[
ln

(
1

1− P(i )
d

)]}]/
[(

N∑
i = 1

ln K (i )
d

)2

− N
N∑

i = 1

(
ln K (i )

d

)2
] (19)

Note from Equation 9 that the damage factorKd is a
function ofn. Therefore,m, K0 andR2 are dependent
onn. Generally,n can be chosen to minimizeR2.

3. Results and discussion
First, a series of controlled impact tests were conducted
to establish the probability of damagePd at various im-
pact velocities. Square (305 mm× 305 mm) laminated
glass specimens were glazed in a custom-built wood
holding frame with rubbber spacers and were simply
supported along their entire perimeters. A compressed
air cannon was used to propel a 2 g steel ball of 7.94 mm
diameter. All impacts were made normal to the outer
glass ply with a cannon-to-glass distance of 25 mm,
which made velocity loss between the cannon muzzle
and the impact site negligible. Details of experimental
procedure and description of the apparatus are reported
in Behr and Kremer [9]. Fig. 4 shows the experimen-
tal results of damage probability (Pd) as a function of
impact velocity (V0) for a laminated glass unit with
ho= hi = 4.81 mm andhPVB= 1.52 mm subjected to
2 g steel ball impacts. These experimental results will
be used later to determine the material parametersn, m
andK0.

The dynamic finite element analysis was also car-
ried out for the above laminated glass unit (ho= hi =
4.81 mm andhPVB= 1.52 mm) subjected to 2 g missile
impacts at various velocities. Fig. 5 illustrates the com-
puted damage factor at the impact site (Kd) by using
Equations 8 and 9 as a function of the impact velocity
for various values ofn. As expected, the damage factor

increases monotonously with the impact velocity for a
given value of the material parametern. It is found that
all curves cross over at an impact velocity of 3.5 m s−1.
For a fixed impact velocity, the computed damage fac-
tor at the impact siteKd decreases with increasingn

Figure 4 Observed damage probability at various impact velocities for
a laminated glass unit (ho= hi = 4.81 mm andhPVB= 1.52 mm).
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Figure 5 Computed damage factor as a function of impact velocity for
various values ofn for a laminated glass unit (ho= hi = 4.81 mm and
hPVB= 1.52 mm).

when the impact velocity is less than 3.5 m s−1, while
it increases with increasingn when the impact velocity
is higher than 3.5 m s−1.

By combining the results of Figs 4 and 5 at a given
impact velocity, the relationship between the proba-
bility of damage (Pd) and the damage factor (Kd) for
a given value ofn is obtained as shown in Fig. 6. It
is found that ln{ln[1/(1− Pd)]} varies almost linearly
with respect to lnKd for a givenn. Equation 13 is thus
validated by experimental data, in conjunction with the
finite element analysis. This also implies that all the
assumptions made in arriving at Equation 13 are valid.

Having determinedPd andKd, the material parame-
tersm andK can now be obtained using Equations 17
and 18 for a givenn. The variation of the material pa-
rametermas a function ofn is shown in Fig. 7. The ma-
terial parametermsharply decreases with an increasing
n. Fig. 8 shows the variation of the material constant

TABLE I Effect of selection ofn on predicted probability of damage

Predicted probability of damage,Pd

n = 10 n = 16 n = 20 n = 25
m= 0.263 m= 0.165 m= 0.132 m= 0.105

V0 (m s−1) K0 = 1.36× 10−3 s K0 = 2.85× 10−2 s K0 = 0.227 s K0 = 3.02 s

3.04 0.127 0.126 0.126 0.128
4.56 0.355 0.354 0.354 0.356
6.08 0.567 0.565 0.565 0.566
7.6 0.720 0.719 0.718 0.718
9.12 0.829 0.829 0.828 0.828

10.64 0.900 0.901 0.900 0.900
12.16 0.943 0.944 0.943 0.943
13.68 0.968 0.969 0.969 0.969

Figure 6 Relationship between damage probability and damage factor
for various values ofn for a laminated glass (ho= hi = 4.81 mm and
hPVB= 1.52 mm).

K0 as a function ofn. The logarithm of the material
constantK0 increases approximately linearly withn.
For a given value ofn, the material constantsm andK0
can be determined by using Figs 7 and 8.

By using Equation 19 and data shown in Fig. 6, the
summation of the square of the error (R2) is calcu-
lated to be approximately constant for all values ofn
used in the analysis, indicating a good fit through the
entire range ofn values. This finding can be further
verified by using the computed damage factorKd for
different values ofn from Fig. 5 in Equation 12 to cal-
culate the probability of damage (Pd). Table I shows
the predicted probability of damage as a function of
n for a given impact velocity. From Table I, it can be
seen that the selection ofn has no effect on the pre-
dicted results. In the following prediction, an arbitrary
valuen= 16 will be used. From Figs 7 and 8, the corre-
sponding material parameters are given bym= 0.165
andK0= 2.85× 10−2 s.
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Figure 7 Material parameterm as a function of material parametern.

Figure 8 Material parameterK0 as a function of material parametern.

Fig. 9 illustrates the predicted probability of damage
at the impact site in the outer glass ply as a function of
the impact velocity for laminated glass units with dif-
ferent glass ply thicknesses but a fixed PVB interlayer
thickness. The probability of damage increases as the
impact velocity increases for a given glass ply thick-
ness. The probability of damage increases as the im-
pact velocity increases for a given glass ply thickness.
For a fixed impact velocity, the probability of damage
slightly increases as the glass ply thickness increases.

Figure 9 Predicted probability of damage at impact site as a function
of impact velocity for different laminated glass units with a fixed PVB
interlayer thickness.

Figure 10 Predicted probability of damage at impact site as a func-
tion of PVB interlayer thickness for laminated glass units with
h0= hi = 4.81 mm.

Fig. 10 shows the predicted probability of damage at
the impact site in the outer glass ply as a function of the
PVB interlayer thickness for laminated glass units with
h0= hi = 4.81 mm subjected to 2 g missile impacts at a
fixed impact velocity. It is found that the PVB interlayer
thickness has a negligible effect on the probability of
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Figure 11 Comparison of prediction results with experimental data for a
laminated glass unit withh0= hi = 4.78 mm andhPVB= 0.76 mm sub-
jected to a low-velocity 2 g missile impact.

damage at the impact site on the exposed surface of the
outer glass ply of laminated glass units.

Another group of impact tests were conducted dur-
ing this investigation for a laminated glass unit with
h0= hi = 4.78 mm andhPVB= 0.76 mm to validate the
analytical model presented in this paper. The experi-
mental procedures and apparatus are same as those used
in determining the material constantsn,m andK0. The
experimental results are compared with the analytical
predictions for the above laminated glass unit, as shown
in Fig. 11. It is encouraging to note that the predicted
probability of damage at the impact site on the exposed
surface of the outer glass ply is in good agreement with
those experimentally measured.

4. Conclusions
The analytical model developed in this paper based on
the dynamic non-linear finite element method can be
used to predict the probability of damage at the impact
site (under the impactor) of the outer glass ply of lam-
inated glass units subjected to low-velocity small hard
missile impacts. Predicted results are in good agree-
ment with experimental data. The probability of dam-
age at the impact site in the outer glass ply depends
strongly on the impact velocity and weakly on the glass
ply thickness. The PVB interlayer thickness has a neg-
ligible effect on the compressive damage of the outer
glass ply.
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